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Abstract

Blind source separation (BSS) consists of recovering signals from different physical sources from several
observed combinations independently of the propagation medium. BSS is also a promising tool for non-
destructive machine condition monitoring by vibration analysis, as it is intended to retrieve the signature of
a single rotating machine from combinations of several working machines. In this way, BSS can be seen as a
pre-processing step that improves the diagnosis.

BSS methods generally assume observations that are either noise-free or corrupted with spatially distinct
white noises. In the latter case, principal component analysis (PCA) is applied as a first step to filter out the
noise and whiten the observations. Obviously, the efficiency of the whole separation procedure depends on
the accuracy of the first step (PCA).

However, in the real world, signals of rotating machine vibration may be severely corrupted with
spatially correlated noises and therefore the signal subspace will not be correctly estimated with PCA. The
purpose of this paper is to propose a ‘robust-to-noise’ technique for the separation of rotating machine
signals. The sources are assumed here to be periodic and so can be modelled as the sum of sinusoids of
harmonic frequencies. A new estimator of the signal subspace and the whitening matrix is introduced which
exploits the model of sinusoidal sources and uses spectral matrices of delayed observations to eliminate the
influence of the noise. After whitening, the second step of source separation remains unchanged. Finally,
performance of the algorithm is investigated with artificial data and experimental rotating machine
vibration data.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Blind source separation (BSS) consists in recovering signals of different physical sources from a
finite set of observations recorded by sensors. Under the only hypothesis of mutually independent
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sources, BSS extracts the contributions of the sources independently of the propagation medium.
These methods have been successfully used in many fields such as medicine, telecommunications
or audio processing [1].

BSS is also a promising tool for non-destructive machine condition monitoring by vibration
analysis, as it is aimed at the retrieval of the signature of a single rotating machine from mixtures
of several working machines [2—7]. Specific methods of fault detection could then be applied to the
signatures of each machine to be diagnosed. In this way, BSS can be seen as a pre-processing step
that improves the diagnosis.

The crucial point in BSS methods remains that the observations are generally assumed to be
noise-free or corrupted with spatially white noises [8]. Usually, noisy BSS techniques apply
principal components analysis (PCA) as a first step, to filter out the noise and whiten the
observations (if more observations than sources are recorded) [9]. In short, PCA exploits the only
hypothesis of decorrelation between sources and projects the observations on an orthonormal
base of the signal subspace. The estimation of the signal subspace requires either knowledge of the
covariance noise matrix, or the hypothesis of spatially white noises. After this step, projections of
the observations on the signal subspace are uncorrelated but are still mixtures of the sources.
Further separation is then achieved using the stronger hypothesis of mutually independent sources
to recover the sources [§]. Obviously, the efficiency of the whole process depends on the accuracy
of the first step (PCA). In other words, without any a priori knowledge on the additive noises, the
performance of BSS relies on the availability of the assumption of spatially white noises.

However, in the real world, signals of rotating machine vibration may be severely corrupted with
spatially correlated noises coming from a noisy environment and therefore the signal subspace will
not be correctly estimated [10]. In such an experimental context, PCA and thus BSS lose efficiency.

The purpose of this paper is to propose a robust-to-noise technique for the separation of
rotating machine signals. The sources are assumed here to be periodic and so can be modelled as
the sum of sinusoids of harmonic frequencies; for example, harmonics of the rotation frequencies
[10,11]. No assumption is made regarding the statistical property of the noise component. The
only hypothesis is that the autocorrelation lengths of the sources are larger than the
autocorrelation lengths of all the noises. As the standard PCA cannot provide a correct estimate
of the signal subspace in a noisy situation, a new estimator of the signal subspace and the
whitening matrix is introduced. It exploits the model of harmonic sources and uses spectral
matrices of delayed observations to eliminate the noise influence. After whitening, the second step
of source separation remains unchanged. The whole method is semi-blind in the sense that the
propagation medium and the noise spectral matrices are unknown.

Finally, performance of the algorithm is investigated with artificial data and experimental
rotating machine vibration data.

2. Principle of BSS
2.1. Introduction

BSS consists in recovering signals of different physical sources from the observation of several
combinations of them. Typically, the observations are obtained as the output of a set of sensors,
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where each sensor receives a different combination of source signals. The adjective “‘blind”
indicates that the source signals are not observed and also that no information is available about
the combinations and the noises. This approach is usually used when it is too difficult to model the
transfer from the sources to the sensors. The lack of knowledge about the combinations and the
sources is compensated by the hypothesis of mutually independent sources. Nevertheless, signals
of different physical sources generally satisfy this condition. This assumption allows exploitation
of the spatial diversity provided by many sensors and is the fundamental basis of BSS.

The general model of BSS is shown in Fig. 1. p statistically independent signals (called sources)
S(n) = [s1(n), ...,s,(n)] are received on m sensors (m=>p) through an unknown propagation
medium at the discrete time n. The observation vector X(n) = [x((n), ..., x;(n)] is therefore a
mixture of the p sources. In the most general case the mixture X(#) is described by the unknown
mixing matrix A(n) and is corrupted with additive noise N(n) = [n;(n), ..., n,,(n)]. Noise is also
supposed to be independent of the sources. Both the sources and the noises are required to be
stationary and have a zero mean.

Most research is done for BSS with a linear instantaneous mixture model (see Refs. [8,9,12])
whereas the unknown mixing matrix A(n) is supposed to be time-independent. This model is only
applicable if the propagation delay through the medium is very short (in relation to the sampling
period). It is commonly established in fields such as telecommunications or biomedicine.
However, mechanical systems are one example in which the instantaneous assumption does not
always hold true due to the transfer delays of the vibrations through the structures. Usually, the
model used for this application is a linear time dependent mixture, called a convolutive mixture
[4,5,7,10]. Supposedly, this is related to the rigidity and size of the structure under investigation
[13]. Large and elastic structures will account for severe filtering and delays in the transmission,
whereas small and rigid structures may show approximately instantaneous mixtures [13].

BSS methods consist of finding an estimate R(n) of the sources S(n) as an unknown linear
transformation of the observations X(n). This separating function is adapted from the data and
attempts to equalize the effect of the propagation medium. In the noise free model, it is known to
lead to components of R(n) as independent as possible [8,14], after a theorem of Darmois. Many
approaches explore the different formulations of statistical independence, cross-cumulant
cancellation, entropy minimization, likelihood approaches, etc., for a complete survey on
statistical principles for BSS see Refs. [15-17]. In the noisy case, PCA is first used to eliminate a
major part of the noise [9].

Several approaches can be found in the literature to realize BSS with a convolutive mixing
model, using either a temporal model [18-20], or a frequency mixing model [5,10,21,22]. Both are
detailed below in Sections 2.2 and 2.3. Later, inherent ambiguities to the BSS problem are
stressed.
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X(n) RM) |r,(n)

PO A i — / — "

s,(n) ro(n)

Fig. 1. BSS general scheme.
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2.2. The temporal convolutive mixing model

The general model of a convolutive mixture can be represented as shown in Fig. 2.
Each A4;(z) represents the linear transfer function from the ith source to the jth sensor and is
given by A;(z) = > 24 - z~!. The whole mixing system can be summed up as
Aui@ ... Aw(2)
A(z) = 5 - C | (1
Apl(z) Apm(z)

So, the observation vector X(n) can be written as a convolution between the sources S(n) and the
mixing process. Using the z transform, the ith component of X(z), x;(z), is described by

p
xXi(2) =Y Au@s(2) +mi2), i=1,...p. )
k=1

System (2) is usually noted with a matrix formulation:
X(n) = [A(2)] - S(n) + N(n), (3)

where z~! is both the backward-shift operator i.e., z7' - S(n) = S(n — 1) as well as the complex
variable in the z transform. So, the aim of separation is to estimate a stable inverse system of A(z)
i.e., a filter C(z) such as

R(n) = [C(2)] - X(n) = S(n) + [C(2)] - N(n). “4)
m(n)

si(n) Au(2) + X1(N)
e /
Apl(z) n2(n)
A12(Z)

S(n) [A2(2)] + X2(N)
Aol@)
Ain(2) ()
Aan(2) l

5 Por@)] D— )

propagation medium

Fig. 2. Convolutive mixing model.
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2.3. The frequency convolutive model

In frequency domain, the convolutive mixture is reduced to an instantaneous complex mixture
for each frequency bin. Let X(n,f) (respectively, S(n,f) and N(n,f)) be the L-points discrete
Fourier transform (DFT) of the data block of the data vector [X(n), ..., X(n + L — 1)] (respectively
[S(n), ...,S(n+ L — 1)] and [N(n), ...,N(n+ L — 1)]). X(n,f) is a vector that denotes the sliding
DFT along the time axis starting at time # for each signal component. With these notations, the
mixing model can be written as

X(n,f) = A(f)S(n,f)+N(n,f), f=0,...,L—1. (5)

The transfer matrix A(f) (m x p) characterizes the linear propagation from p sources to m
sensors and must be pseudo-invertible to recover the p sources at frequency bin f. Then, the aim
of BSS is to estimate a separating matrix C(f) whose the p outputs are

R(n.f) = C(f) - X(n,f) = S(n,f) + C(f) - N(n, f). (6)

So, R(n, f) represents an estimate of the vector S(n, f). The ideal result is obtained with C(f) equal
to the pseudo-inverse of A(f).

2.4. Indeterminacies and uniqueness

Intrinsically, two ambiguities are inherent to the BSS problem. First, the mathematical
independence is insensitive to a source permutation. For instance, consider the previous frequency
mixing model (5). If P(f) is assumed to be a permutation matrix, the mixture model can be re-
written in the noise free case (N(n) = 0) as

X(n./) = [A(/) - P()']-P(f) - S(n.), (7

where the elements of P(f)-S(f) are the permuted original sources and the mixing matrix
A(f)-P(f)"" is a new mixing matrix estimated by the BSS algorithm. It implies that it is
impossible to know the original labelling of the sources.

Given that the mathematical independence is insensitive to a scaling factor applied on the
sources, the second indeterminacy is that it is impossible to uniquely identify the sources. Hence,
from Eq. (5) the observations can be expressed as

X(m.f) = [A(S) - D(f)"']- D) - S 1), (®)

where D(f) is any diagonal matrix.

So, any scalar multiplier in one of the sources S;(n,f) can be cancelled by dividing the
corresponding column of the matrix A(f).

In short, in the frequency domain, the assumption of independent components allows the
matrix C(f) to be estimated such that the product C(f) - A(f) is equal to a diagonal matrix D(f)
up to a permutation matrix P(f):

C(f) - A(f) = D(f) - P(f). ©)

In time-domain, the scaling indeterminacy is a filtering indeterminacy and Eq. (3) does not
define the filters A(z) uniquely (i.e., they are not identifiable) but up to a linear filtering D(z) and a
sources permutation.
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The non-uniqueness of the BSS results can set many problems to the user, especially in
monitoring or diagnosis purposes. It is possible, however, to reduce the shape indeterminacy in
the model by setting a constraint either on the matrices A(z) (the diagonal terms of A(z) are
usually supposed to be unity) [5,16,18] or on S(n, f) (its components are generally assumed to have
unit variance) [5,8]. However, the filter indeterminacy can be partially circumvented by restoring
the contribution of each source on each sensor with a correlation measure between the sources
R(n) (or R(n, f)) estimated with BSS and the observations X(n) (or X(n,f)) [4,5].

However, if the above-mentioned order ambiguity is not disturbing in the time domain BSS, it
is the main obstacle when applying BSS in the frequency domain as a different permutation of
different frequency components leads to mixed outputs and to degraded separation results. To
remove the permutation indeterminacy, several approaches exist in the literature [21-26]. For
instance, some algorithms aim to order the output channel according to the maximal correlation
between the frequency components [21-24] or their envelopes [25], or according to their fourth
order cumulants [26]. Moreover, a specific approach is proposed for rotating machine data in
Refs. [7,27].

3. BSS of noisy convolutive mixtures
3.1. Introduction

Many approaches can be found in the literature to realize BSS with a convolutive mixing
model, using either a temporal model (Section 2.2) [18-20], or a frequency mixing model
(Section 2.3) [5,10,21,22]. An overview is proposed in Ref. [28]. First, it is shown in Section 3.2 how
the second order statistics of data (which only exploit hypothesis of decorrelation of sources) are not
generally sufficient to solve the BSS problem. Indeed, they need extra information contained in the
hypothesis of sources independence to achieve their objective, as detailed later in Section 3.6.

The estimation of the noise-free model seems to be a challenging task in itself, and thus the
noise is most often omitted. Many functions, sometimes called contrast functions, have been
proposed for instantaneous mixture (or ICA) in the noise-free case [15-17,29]. They all measure
the independence between the components of the BSS system outputs R(n) or R(n,f), as the
separating matrices C(z) or C(f) must perform signals that are as independent as possible in the
noise-free model. Whatever the envisaged method, results seem to be very accurate.

Few methods exist for noisy instantaneous BSS. Practically all methods taking noise explicitly
into account assume that the additive noise is either spatially white [8,9,30] or sometimes Gaussian
[31-33]. Often, PCA is widely used as a pre-processing for its denoising capabilities [9,30]. Its basic
goal is first to reduce the dimension of the data. Assuming strictly more sensors than sources
(m > p), a projection of the data into the p dimensional PCA subspace (also called the signal
subspace) removes noise. The estimation of the signal subspace requires either knowledge of the
covariance noise matrix, which is difficult to obtain in practice, or the hypothesis of spatially white
noises [9,30]. The previous contrast functions can afterwards be applied to the de-noised
observations.

BSS with a convolutive mixing model can be achieved using either a temporal or a frequency
model. Some contrast functions can be extended to the convolutive case, expressed in the
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time-domain [18-20]. However, the resulting optimizations are not easy, as there usually exist
local maxima [34]. The optimization is generally performed in an adaptive way and therefore no
noise can be taken into account [5,18-20]. Yet, as convolutive mixtures can be reduced to several
instantaneous complex mixtures after DFT (Section 2.3), PCA can be used in each frequency bin
to de-noise the observations.

The paper focuses on the application of BSS of rotating machine signals by vibration analysis.
In an industrial environment, a rotating machine signal may be severely corrupted by other
interfering sources and noise, which are often much louder. Negative signal-to-noise ratios occur
frequently [7]. Consequently, in this paper, emphasis is placed on the convolutive model expressed
in the frequency domain while additive noises can be taken into account with the wide hypothesis
(m > p). First, the principle of PCA is recalled in Section 3.3 and next its application for the de-
noising of spatially white noises in Section 3.4. However vibration signals are generally corrupted
with spatially correlated noises [35]. Hence, a modified PCA is developed for spatially correlated
noises in Section 3.5, adding the model of periodic sources. While the standard PCA cannot
provide a correct estimate of the signal subspace in this noisy situation, a new estimator of the
whitening matrix and the signal subspace is introduced. It exploits the model of harmonic sources
and uses spectral matrices of delayed observations to eliminate the noise influence. Finally, the
principle of independence measurement and some principal contrast functions are briefly
reviewed.

3.2. Second order inadequacy

Initially, a constraint of unit variance is commonly set on the sources S(n,f) to eliminate the
scaling indeterminacy [8,9,17]. The general model then becomes

X(n.f) = A(f) - S(n.f) + N(n,f)  with E{S(n,f)S(n,/)"} =1, (10)

where * denotes the transconjugate and I,, the identity matrix p x p. After a singular value
decomposition (SVD), the mixing matrix A(f) can be expressed as a product of three matrices:

A = V() - AN - TI(), (11)

where V(f) and II( f) are two unitary matrices respectively m x m and p x p. A(f )1/ Zisamxp

diagonal matrix with elements \/Z, i=1,...,p. The eigenvalues are assumed to be ranged in
decreasing order.

To understand the inadequacy of second order statistics, the spectral matrix of the noise-free
observations Y(7,f) is considered:

Y(n,f) = A(f) - S(n.f). (12)
Given that the spectral matrix of Y(n,f) is equal to
Ry(f) = E[Y(n,./)Y(n,./)"] = E[(A()S(, N)A)Sn.1))']
=ANAUN" = VINANV(N)T (13)

it may be seen that Ry(f) does not depend on the rotation matrix IlI( /), which is necessary to
identify the matrix A(f). In short, the BSS problem cannot be solved only using second order
statistics because independence is a stronger condition than uncorrelation. To estimate the



324 C. Serviere, P. Fabry | Journal of Sound and Vibration 272 (2004) 317-339

missing unitary matrix Il(f), an independence criterion is needed using the spatial diversity
provided by the mixing model (see Refs. [8,9,15,17]).

3.3. Principle of PCA

PCA is a standard technique to reduce the dimension of data. It is also a first step for BSS
techniques to spatially whiten the observations and filter out additive noises if the observations
number m is assumed to be greater than the sources number p [9,30,36]. Note the general mixing
model:

X(n.f) = A(f)-S(n.f) + N(n,f) with E{S(n,/)S(n./)"} =1,
and  A(f) = V(/)-A(H'-TI(f).

PCA projects the m dimensional noisy observation X(#, /) on an orthonormal base of the signal
subspace of dimension p with a (p x p) dimensional whitening matrix W( /). The signal subspace is
spanned by the p first eigenvectors of the spectral matrix of the noise-free observations Ry(f) i.e.,
the p first columns of matrix V(f) [30,36]. The whitening matrix W( f) verifies relation (14):

W) Ry(f)-W(NH" =1, (14)
with Ry(f) = V(/)A(f)V(f)". Therefore the solution for W( f) is given as
W) = AN ViN* (15)

where A (f) is the square submatrix containing the first p diagonal elements of A(f) and V(f),
the rectangular submatrix containing the first p columns of V(f).

While Ay(f) and V,(f) are given by the eigenvalues and the eigenvectors of Ry(f), PCA
exploits only the second order statistics contained in the spectral matrix of the noise-free
observations to identify the whitening matrix W(f) at each frequency bin f.

The observations X(#, /) are then projected on the subspace and whitened with the help of the
whitening matrix. The resulting data Z(n, ) are written as a p dimensional vector Z(n, f):

Z(n.f) = W(f) - X(n.f) = XI(f) - S(n.f) + W(f) - N(n. ). (16)

By a projection on the signal subspace, all the contributions of the noise that are contained in the
noise space are taken out. This allows an important noise reduction when the number of sensors is
much greater than the sources number [36].

In these conditions, the noise residues are generally neglected after PCA and the data are
assumed to be [9,17]:

Z(n.f) = II(f) - S(n.f). (17)

The problem is then reduced to the general noise-free case. The data are still linked to the
components of the source vector S(n, f) by a remaining unitary transformation matrix I( /) which
is identified by a measure of independence (detailed in Section 3.6).

3.4. PCA with noisy observations

It has been shown in Section 3.3 that PCA involves the eigenvalues and eigenvectors of Ry(f)
to compute the whitening matrix (i.e., Vy(f) and Ay(f)). Unfortunately, in a noisy context, the
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spectral matrix of the noise-free observations Ry( f) is not easily accessible and the goal of PCA is
to compute Ry(f), under some conditions, using only the noisy observations X(#, f).
Taking into account that the spectral matrix of X(f) is equal to

Ry(f) = Ry(f) + Ry(f) = VINA V)" + Ru(f), (18)

where Ry(f) is the noise spectral matrix, it is clear that the problem can be solved if a priori
information on Ry(f) is known. In that particular case, the eigen value decomposition (EVD) of
the matrix (Ry(f) — Ry(f)) provides the whitening matrix.

When the noises are spatially white, the noise spectral matrix is of the form

Ry(f) = oxIm (19)
and the EVD of Ry(f) provides the same eigenvectors as for Ry(f) (19), as shown below:
Rx(f) = V() - (AS) + oxIm) - V(' (20)
Q(f)

o3 can be estimated from the (m — p) last eigenvalues of Q(f) and subtracted to the p first

eigenvalues to get an estimate of Ag(f).

With experimental signals, Ry( f) is hardly ever on the form of Eq. (19) and factorization (20) is
no longer possible [35]. Consequently, in the presence of spatially correlated noises, the first p
eigenvectors of Ry(f) no longer span the signal subspace but a p dimensional subspace in the m
dimensional space of observations. The whitening matrix is not correctly estimated because of
errors in the estimation of both V (f) and Ay(f). The PCA loses efficiency while the noisy
observations are projected on a wrong subspace. Therefore the model after PCA step is no longer
equal to

Z(f)#I(f) - S(f) 2D

and the second step of estimation of the remaining matrix II( /) also fails.

In the case of mechanical signals from rotating machines, a priori information on the noise
spectral matrix is not available. So, a model of periodic sources is added in the next section to
replace this lack of information. The model of periodic sources is then exploited to get a new
estimator of the whitening matrix W( f), which is robust for spatially correlated noises.

3.5. PCA with periodic sources

A direct estimator of the noise-free spectral matrix Ry( f) is proposed in this section, computed
from spectral matrices of delayed observations. The sources are first assumed here to be signals
from rotating systems and so are periodic. Their autocorrelations are also periodic and the
autocorrelation lengths are therefore infinite. For this reason, the autocorrelation lengths of the
sources are assumed to be larger than the correlation lengths of all the noises. Thus an estimator
of the noise-free spectral matrix Ry(f) is derived from spectral matrices of delayed observations,
as they eliminate the noise influence.

3.5.1. Modeling the observations issued of rotating machines
Particular attention is paid to the types of signals commonly encountered in machine condition
monitoring applications. Since many machines contain rotating parts, the vibration fields they
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generate are often periodic (or quasi-periodic) [4,5,7,10,11,37] and their spectra contain
principally spectral lines. Based on the principle that a line is a sinusoidal component with
steady frequency, at least at the scale of the temporal sequence examined, mixed with noise [37],
each temporal source s;(n) is modelled here as a sum of P sinusoids of constant amplitudes A,
phases ¢, and frequencies fj. Some frequencies can be for instance harmonic to the rotation
frequency:

p
sin) = Ay sinQ@m fixn + ). (22)
k=1

The observations from rotating machines are assumed to be convolutive mixtures of these
periodic signals (22), corrupted with additive noises that may be spatially and temporally
correlated. Both the sources and the noises are required to be stationary and have zero mean.
Although it is a simple model, it will be seen later that it provides good results even on
experimental signals (Section 4.2) [35]. The periodic signals may contain closely spaced
frequencies belonging to various sources. In one frequency bin f, several physical sources (and
so different sinusoids of frequencies f;;) can be mixed. Hence, the mixing model is changed into:

X(n,f) = A(f) - S(n.f) + N(n.f)  with E{S(n,/)S(n,/)"} = 1. (23)

The number p of sources then becomes the number of different frequencies that are mixed in the
frequency bin f. If S;(n,f) is the ith component of source vector S(n,f), S;(n,f) is the L-points
DFT of a sinusoid Si(n) of constant amplitude A4;, phase ¢; and frequency fi: Si(n) =
Ay sin(2z fxn + ¢;.). The L-points DFT S;(n,f) is computed on the data block [Si(n), ..., Si(n +
L — 1)]. The sliding window along the signal causes a phase shift since the time origin # is changed
for each segment [S;(n), ..., Si(n + L — 1)].

1 4 : . nl
Si(n,f) = I Z Ajre SN2 fixn + ) exp (—QWJ Z)
1=0

sin(n( fir — f)L)
sin(n(fix — )
The constraint of unit variance of the source S;(n,f) eliminates the scaling indeterminacy and

requires the terms of S;(n,f) to be complex of unit modulus, i.e., only phase terms. Therefore
Si(n, f) is reduced to

> S expli(hy + 2 fun + 7 fi — /)L~ D)] (4)

Si(n.f) = expli(¢y + 27 fun + n( fie — f)IL — D)]. (25)

3.5.2. Definition of delayed spectral matrix

The delayed spectral matrix at delay 7t is defined as the interspectral matrix between
the observations X(n) and the delayed observations X(n + 7). A similar definition is proposed in
Ref. [37] for a mono-dimensional signal and is called the autocoherent spectrum. It was
developed to improve the extraction of pure sinusoidal components for vibration analysis of a
diesel engine [37].
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Let X(n,f) be the L-points discrete Fourier transform (DFT) of the data block of the data
vector [X(n), ..., X(n + L — 1)] and let X(n + 7, f) be the L-points discrete Fourier transform of the
data block [X(n+1)...X(n+ L — 1 4+ 1)].

The delayed spectral matrix, noted R.(f), is defined as

R (f) = X)X+ 7,/)"}. (26)

An estimator of this delayed spectral matrix, IA{fY( f), is obtained from data by replacing the
statistical average in Eq. (26) with averages on time segments. It is deduced from an estimator of

the spectral matrix Ry( f). For the latter, its estimate R x(f) is usually computed with the Welch
method [38]. If the data record is sectioned into K adjacent time segments of L samples each,

T{X(f) is written as:
K-1

. 1 +
Ry(f) =% ; X(feL,f)X(KL,f)" . (27)
An estimator of the delayed spectral matrix arrives naturally from Eq. (27) and is defined by

1 K—-1

% > X(KL XKL+ 7./)*. (28)
k=0

RY(f) =

The statistical properties of estimator (28) are detailed in Ref. [37]. In practice, for a noisy
sinusoidal component with steady frequency, the sinusoid appears as a coherent signal in the
autocoherent spectrum, with a steady phase relationship, while the incoherent noise level is
lessened [37]. It will yield de-noised spectral matrices of noisy periodic sources.

3.5.3. Estimation of the whitening matrix for periodic sources

The PCA problem, previously detailed in Section 3.4, is now considered further. The delayed
spectral matrix can be employed in PCA to build the noise-free spectral matrix Ry( /) under some
conditions. Since the sources are assumed to be periodic, the autocorrelation lengths of the
sources can be supposed to be larger than the correlation lengths of all the noises. Let 7y be the
greater correlation or cross-correlation of the m noises. If 1>ty + L, at each frequency bin, the
matrix R%(f) contains only information about the sources as R}(f) is equal to zero:

Ry () = A() - E{S(./)S(n +7./)"} - A()". (29)

Note that p sinusoids of frequencies f; are present in the analyzed frequency f. Given Eq. (25)
for Si(n,f), Ry (f) can be written as

Ry (f) = A(f) - E{S(n,/)S(n +7./)"} - A(f)" (30)
R§(/)

with
e—janlr 0

Ry(f) = ,

0 o2yt
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where R( /) is a diagonal matrix with only phase terms, due to the constraint of normalization of
the sources variance.
If the mixing matrix A(f) is replaced with its SVD (Eq. (11)) in Eq. (30):

RY(f) = V() - AN - - R - TN - (AN - VN (1)

The aim of this section is to recover the spectral matrix of noise-free observations Ry(f),
Ry(/) = V(/HAS)V(S)"). The great interest of the delayed interspectral matrix R%(f), versus
the classical spectral matrix Ry(f), lies in the fact that the noise influence is eliminated, as the
noise spectral matrix Ry( f) does not appear in Eq. (31) (contrary to Eq. (18)).

Unfortunately, the phase matrix R(f) is present in Eq. (31) and prevents the suppression of
the unitary matrix II( /) in R%(f), as it happens in Eq. (18). Nevertheless, taking into account the
phase relationship in R(f), several delayed spectral matrices are combined in order to remove
R§(f) (and so II(f)) and to recover the EVD of Ry(f). Note that if the delay 7 is replaced with
(—7) in Eq. (31), the phase sign is also changed in the expression of Ri( f).

For that reason, Ry'(f) is given by

R () = V() - AN T - RN TN ANDT-VNH* (32)
In a similar way, a second delayed spectral matrix with delay (—27) is now computed:
Ry7() = V() - AN 1N - RE(HD TN - AN VN (33)

According to Eqs. (31)—(33), it appears that a judicious combination of the two matrices R(f)
and R} 2T( f) allows the problem to be solved. Hence, two delays (tr and —21) are sufﬁc1ent to
eliminate the phase matrix R§(f). Let H(f) be equal to

H(/) = Ry () - RY ()RS, (34)

where # represents the pseudo-inverse matrix.
Detail now the computation of (R%(f)")”:

R.(N)" = V() - AN T - RGN -TINT - (AN V()T (35)
as RG(N)" = R5()) ™
Ry (NN = V() - (AN 1) - RE() - TN - (A7 - V()T (36)
Consequently, from Egs. (31), (33) and (36), it can be proved that it is theoretically possible
to re-determine the EVD of Ry(f). Due to the phase terms of the diagonal matrix R§(f),
Eq. (34) yields
H(/) =R%(/) - RY (N )R (/)
= V() AN T - RY() - RENDREN) ™ T ANZ V()
Ip
=V()-A)- V(' (37)
and finally, matrix H(f) is equal to

H(/) = Ry (/). (38)
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The key point of the method lies in the phase relationship in the delayed spectral matrices of the
sinusoidal sources:

RY(f) - RS() - R5™(f) = R(f) - RYNRE()) ™ =1, (39)

As the expression of matrix H(f) (Eq. (30)) can be estimated directly from the noisy data
X(n, f), the un-noisy spectral matrix Ry(f) is reconstructed exactly, whatever the chosen delay t,
provided that the noise components between X(n,f) and X(n + 1,f) are decorrelated. Indeed,
H(f) is estimated from noisy data through the estimation of the delayed spectral matrices R(f)
and R}zf( ), using the estimator described in Eq. (28).

Unfortunately, this estimator of H(f) (Eq. (37)) involves the inverse of a matrix R%(f) that is
theoretically of rank p but numerically of rank n. So, stability is improved using the pseudo-
inverse algorithm so that only p eigenvalues are inversed. Choosing the number of eigenvalues p is
the same as choosing the number of sources. The usual AIC and MDL criteria [39] perform an
hypothesis testing on the eigenvalues of the spectral matrix but both methods assume that the
noises are Gaussian and spatially white. It is then more robust to establish the source number
directly from a delayed spectral matrix for example by using the eigenvectors [40].

The EVD of the estimate of matrix H( /) generates estimates of the eigenvalues matrix A( f) and
the eigenvectors matrix V( /) of Ry( f). Therefore, correct estimates of the signal subspace and the
whitening matrix W( f) are derived, even in severe spatially correlated noise conditions.

As a conclusion, a modified PCA for periodic sources is proposed in this section. Performance
of the algorithm is investigated in Section 4 with simulation and experimental results for rotating
machine data.

3.6. Measuring independence and contrast functions

BSS consists of recovering independent sources from convolutive mixtures of these sources. As
described in previous sections, PCA is usually used as pre-processing to reduce the dimension of
the data and for its de-noising capabilities. After the classical PCA step or the modified PCA for
periodic sources (Section 3.5), the observations X(#, f) are projected on the signal subspace and
whitened with the help of the whitening matrix W(f). The noise components are generally
neglected and the sphered data Z(n,f) are assumed to be equal to

Z(n.f) = 1(f) - S(n.f). (40)

After this step, the BSS problem is reduced to the estimation of the inverse of the remaining
unitary matrix II( /), C(f). Extra information contained in the hypothesis of independent sources
is exploited to identify it. Indeed, it has been proved theoretically that the separation is achieved
when the p components of the separating system C(f)-Z(f) are mutually and statistically
independent [8,14], after a theorem of Darmois [14]. In practice, the p components of the
separating system C(f) - Z(f) are required to be as independent as possible. Many approaches
explore the different formulations of statistical independence, cross-cumulant cancellation,
entropy minimization, likelihood approaches, etc.

For a complete survey on statistical principles for BSS see Refs. [15-17]. Usually this unknown
rotation matrix C(f) is obtained by maximization or minimization of an objective function which
is also called the contrast function [8] which implements an independence measurement.
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The definition of independent random variables is noted below:

Definition 1. Random variables are said to be independent if their joint probability density
function (pdf) is equal to the product of their respective marginal densities, i.e., assume a m X 1
random vector R = [R}, Ry, ..., R,;] with a multivariate probability density function p(r), then
independence allows p(r) to be factorized, i.e.,

p(r) = p1(r1) - p2(r2) - pu(rm). (41)

Contrast functions for BSS were first introduced by Comon [8] and many different approaches
exist in the literature. The principal contrast functions are only reviewed here. They can be derived
from the Maximum Likelihood principle [15,41], the Kulback divergence [41] or the mutual
information [12,41].

One way to simplify these contrasts is to introduce cumulants via polynomial density expansion
[42]. The first example is given by Gaeta and Lacoume [31] with an approximation of the
likelihood by a Gram—Charlier expansion. Comon [8] suggests an approximation of the mutual
information by an Edgeworth expansion. Another way to derive some empirical contrast is the
approximation of independence via cumulants. Indeed, two signals are statistically independent if
all cross-cumulants (at any order k) are equal to zero. For computational reasons, the
approximation of cumulants and moments is generally done up to the fourth order. The
minimization of cross-cumulants leads to empirical contrasts like kurtosis cancellation [43] or
some fourth order cumulants (called the JADE algorithm) [44].

All these contrast functions are closely related [15] and their performance is similar. In the next
section, results on experimental signals were obtained with the well-known algorithm JADE,
which maximizes the following contrast function [15]:

p
()=~ > |CumlRinf). Rn.f)* Re(n.f), Riln.f)*. (42)
z,/;cjll;lzjkk

Concerning statistical independence, the additional information exists only under the
hypothesis of non-Gaussian sources. This explains why Gaussian variables are inadequate for
solving the BSS problem. Fourier transform is often thought to converge towards Gaussianity,
but it was shown in Ref. [21] that this assertion is not valid for spectral lines signals like those of
rotating machines. More precisely, a distance to Gaussianity, called the spectral kurtosis, is
defined for complex variables as the normalized fourth order cumulant:

K(f) = Cum[R(n, /), R(n, /)", R(n, /), R(n, ')*].

| Cumn[R(n, /), R(n, )" )

Its estimation 7(( ),

| ~K-1 4 1 vK-1 212
- => 0 |R(n, — > —o R(n,
k() - A2 RO~ Ty R P w
(% 2_neo R ))
tends toward —1 at all the harmonic bins when the number of averages K is large enough. Hence,
for these latter, any higher order based source separation algorithm for instantaneous complex
mixtures can be employed in each frequency bin.
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4. Applications

The purpose of this section is to provide an illustration of the capability of BSS algorithms to
separate signals from noisy rotating machine vibration. First the performances of the proposed
PCA versus classical PCA are compared for noisy convolutive mixtures of synthetic sinusoidal
sources. Finally, the results of a complete implementation of the BSS algorithm (whitening and
separation) on a real process are presented and discussed.

4.1. Performances of the modified PCA on simulations

In this section, the performance of the proposed PCA method versus standard PCA for noisy
mixtures of sinusoidal sources and its robustness versus low signal to noise ratios is given.

The efficiency of PCA relies first on the estimation (called V( f)) of an orthonormal base of the
signal subspace V,(f) and secondly on the estimation of a whitening matrix (Section 3.3). The
accuracy of estimation of the signal subspace is measured by means of the distance between the
exact signal subspace and the estimated one. From Ref. [45], the distance between two subspaces,
El and E2, is calculated as the 2-norm of the difference between the orthogonal projections onto
El and E2. Indeed, the orthogonal projection on a vectorial space is unique: it is characterized by
V,(f)Vs(f)" where V() is any orthonormal basis of this space. Therefore, the distance between
the exact signal subspace and the estimated one is given by

d = IV{(NHVLN" = VOV (45)

A Monte-Carlo study on the distance to the exact signal subspace d was performed and
illustrates the robustness of the method versus low signal to noise ratios. For that, the signal-to-
noise ratio between source and noise components varied from —10 dB to 10 dB for all sensors.
200 examples of noisy convolutive mixtures of sinusoidal sources were generated, for each signal-
to-noise ratio. Two sources were mixed and observed using 6 sensors. These observations were
processed in the frequency bin of normalized frequency [0.148;0.164] of centre frequency 0.156
and the performances were computed in this bin. The sinusoidal sources of respectively
normalized frequency 0.15 and 0.16 and with constant amplitudes and phases were both present in
this bin.

The mixtures were performed in the frequency domain (cf. Eq. (4)) with the help of a constant
pseudo-invertible mixing matrix 2 x 6. The noise-free mixtures were identical for all the
realizations and signal-to-noise ratios, and also in the signal subspace V( f). Spatially correlated
and spectrally coloured noises were then added to the noise-free mixtures. They result from the
filtering of 200 realizations of Gaussian white noise with fixed AR filters, for each signal-to-noise
ratio.

This section is devoted to the comparison between the proposed PCA method and the standard
PCA and shows off its robustness against low signal-to-noise ratios. For each ratio and each
sample, delayed spectral matrices were estimated on 100 DFT data blocks of 64 samples with 32
samples overlapping. Due to the correlation lengths of the noises, the delay t was chosen equal to
80. A base of the estimated signal subspace VS( f) and a distance d (40) were calculated for the two
methods.
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Fig. 3. Distance between subspaces.

Fig. 3 presents the average of the 200 computed distances for each signal-to-noise ratio where
d1 and d2 denote the distance measured with the modified PCA and the classical PCA. The results
indicate that the two methods are equivalent only for high signal-to-noise ratio (higher than
7 dB). Below 7 dB, the estimation of the signal subspace is greatly improved versus PCA in a
context of spatially correlated noises (d1). The increase of performances (i.e., the difference
between the curves d1 and d2) depends obviously on the value of the noise spectral matrix and on
its distance to a diagonal matrix. The gap between the two curves also shows the limit of PCA in
that context.

The performances of the two methods versus PCA are also compared in the presence of
spatially white noises. In that case, the signal subspace is theoretically correct and the distance to
the signal subspace, noted d3, is only due to estimation errors of the spectral matrix. The curves
dl and d3 are very close which proves the accuracy of the method proposed for spatially
correlated noises. d1 is even inferior to d3 when the model of spatially white noises is verified.
Therefore, the proposed PCA is a useful tool for the whitening of noisy sinusoidal sources.

4.2. Experimental results on rotating machine vibration data

BSS is a promising tool for non-destructive monitoring as it recovers the signature of a single
rotating machine, from combinations of several operating machines. It can be seen as a pre-
processing step that improves the diagnosis since specific methods of fault detection could then be
applied to the signatures of each machine to be diagnosed. BSS methods were already tested on
real signals from a mechanical bench in a noise-free context in Ref. [5]. Thus, it proves the
capability of BSS to separate signals of rotating machine vibration. However, in a noisy
environment, the mixtures are generally corrupted with spatially correlated noises and BSS
methods lose efficiency.

The following results illustrate a complete implementation of the algorithm (whitening and
separation steps) on a real noisy process. Two test beds were fixed to the same structure. Each test
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bed included a synchronous alternator, a motor and a pump. The two test beds were mechanically
independent but electrically linked: the alternator rotation speeds were in a ratio of 0.995. Six
accelerometers were placed on the structure and recorded mixtures of all the sources. In
particular, they all received harmonics of the two rotation frequencies. For example, the spectra of
two accelerometers are shown in Fig. 4 in the band [0, 0.2] (normalized frequency). The bandwidth
is equal to (1/4096) and the harmonics of the rotation frequencies are not separated. It was also
verified that the spectra are composed of spectral lines and corrupted with spatially correlated

noises. Thus it appears that the hypotheses of the proposed method of PCA are correctly satisfied
on these experimental signals.
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Fig. 4. PSD of two accelerometers.
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The whitening and separation procedure was performed in frequency domain. 4096-points DFT
were computed on 256 disjoined windows and next spectral matrices and delayed spectral matrices
were estimated on these data blocks. Each frequency bin has been independently processed and
the re-ordering step described in Refs. [5,21] was used to remove the permutation indeterminacy.
The estimated sources are then temporal signals.

To illustrate the efficiency of the whitening and separation steps, the results obtained in one
specific frequency bin of widthband (1/4096 = 2.44 x 10~%) are displayed, for instance in the band
[0.0514,0.0525] (normalized frequency). From this point of view, a DFT was computed on all the
signals to focus on the spectral content in this particular frequency bin. First, the spectra of the six
observations are represented in Fig. 5 in this band.

Two sinusoids clearly appear Fig. 5 at frequencies 0.0518 and 0.05205. They are present and
mixed on several sensors. The first decorrelating step has been performed with standard PCA
(Fig. 6) or with the proposed PCA method exploiting delayed spectral matrices (Section 3.5)
(Fig. 7). In each case, a two-dimensional signal subspace was estimated and the observations were
projected on these subspaces. The spectra of the two resulting signals (in fine and thick lines) are
drawn in Fig. 6 for PCA and Fig. 7 for the proposed PCA. At this step, noise has been clearly
reduced more with the second method over the whole band. It indicates that the proposed method
gives satisfactory results to de-noise sinusoidal signals.

After this decorrelation step, the separation was achieved with a unique method and the
remaining unitary matrix was performed by the cancellation of some fourth order cumulants
[15,44] (the JADE algorithm). JADE maximizes the contrast function (Eq. (42)). The main reason
for considering this criterion is its link to underlying eigenstructures which allows for an efficient
optimization of it by the mean of joint diagonalization. The unitary matrix is the result of a joint
diagonalization of a set of eigenmatrices issued from fourth order cumulants. These cumulants are
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Fig. 5. PSD of the observations in the band [0.0514,0.0525].
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Fig. 6. Spectra of the two whitened signals with PCA (in fine and thick lines).
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Fig. 7. Spectra of the two whitened signals with proposed PCA (in fine and thick lines).

estimated from the whitened process. The algorithm exploits the extended Jacobi technique and
makes the maximization of Eq. (42) computationally attractive. It is detailed in Ref. [44] and the
code can be found on the website http://www.tsi.enst.fr/ cardoso/.

The spectra of the two sources estimated with the two steps, PCA and JADE, are superposed in
Fig. 8 in fine and thick lines. It reveals that the two sinusoids are still present in the first estimated
source (in fine line) and clearly have not been separated. The second estimated source (in thick
line) seems to contain only noise. Because of the presence of spatially correlated noises, the signal
subspace and whitening matrix were poorly estimated with PCA. Indeed, noise is still evident after
projection on a wrong signal subspace (Fig. 6). Therefore, the separation step completely failed.

Next, delayed spectral matrices are exploited initially (proposed PCA Section 3.5) and the
JADE algorithm as a further step. The spectra of the two estimated sources are depicted in Fig. 9
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Fig. 8. Spectra of the two separated sources with standard PCA and JADE algorithm (in fine and thick lines).
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Fig. 9. Spectra of the two separated sources with proposed PCA and JADE algorithm (in fine and thick lines).

(in fine and thick lines). As the proposed PCA method succeeded well in whitening and de-noising
the observations (see Fig. 7), the two sinusoids are now correctly separated at frequency 0.0518
(fine line) and 0.05205 (thick line). As the frequencies are in a ratio of 0.995, each sinusoid can be
attributed to an alternator.

The results prove the significance of the first decorrelation step in the source separation
technique. The accuracy of the signal subspace and the whitening matrix is fundamental
for the effective estimate of the mixing matrix. The usual PCA assumes the hypothesis on the
noises (spatial whiteness) but it is generally not verified by experimental noisy observations.
In that case, a model of periodic sources is exploited to compute the whitening matrix and
to show the efficiency of the proposed method (versus PCA) based on experimental noisy
observations.
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5. Conclusions

This paper involves a source separation technique in the context of spatially correlated noise.
Source separation techniques generally use principal components analysis (PCA) as a first step, to
whiten the observations. In this context the PCA fails because the noise-free spectral matrix is
poorly estimated. As the usual PCA cannot provide a correct estimate of the signal subspace in
this situation, a new estimator of the whitening matrix and the signal subspace is introduced. This
new estimator exploits the model of periodic sources and uses spectral matrices of delayed
observations. The proposed method is efficient for low signal-to-noise ratios and its performance
is illustrated with simulations and rotating machine vibration data.
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